Answer each of the following questions. You must show your work in order to receive partial credit.

The principal P is borrowed at simple interest rate \(r \) for a period of time \(t \). Find the simple interest owed for the use of the money. Assume 360 days in a year and round answer to the nearest cent.

1) \(P = 900.00 \)
 \(r = 4\% \)
 \(t = 9 \) months

\[
I = P \cdot r \cdot t
= 900 \cdot (0.04) \cdot \left(\frac{9}{12} \right)
= 27
\]

Determine the present value, \(P \), you must invest to have the future value, \(A \), at simple interest rate \(r \) after time \(t \). Round answer to the nearest dollar.

2) \(A = 217.60, \ r = 7\%, \ t = 4 \) years

\[
217.60 = P \cdot (1 + \frac{r}{n})^n
\]

\[
P = \frac{217.60}{\left(1 + \frac{0.07}{4}\right)^{4\cdot 4}}
= 170
\]

The principal represents an amount of money deposited in a savings account subject to compound interest at the given rate. Find how much money will be in the account after the given number of years (Assume 360 days in a year.), and how much interest was earned.

3) Principal: \$8000
 Rate: 7%
 Compounded: semiannually
 Time: 3 years

\[
A = P \cdot (1 + \frac{r}{n})^n \cdot t
= 8000 \cdot (1 + \frac{0.07}{2})^{2\cdot 3}
= 9834.04
\]

\[
I = A - P
= 9834.04 - 8000
= 1834.04
\]

Solve the problem.

4) How much money should be deposited today in an account that earns 11% compounded quarterly so that it will accumulate to \$5300 in 11 years?

\[
P = \frac{5300}{\left(1 + \frac{0.11}{4}\right)^{4\cdot 11}} = 16060.48
\]

Solve the problem. Round to the nearest tenth of a percent.

5) A passbook savings account has a rate of 7%. Find the effective annual yield if the interest is compounded monthly.

\[
\gamma = \left(1 + \frac{0.07}{12}\right)^{12} - 1
= 7.2370
\]