4.4 Exponential & Logarithmic Equations

In this section we will look at how to solve equations involving logarithms or exponents.

Equal Bases Property:

If \(a^u = a^v \) then \(u = v \).

EXAMPLE: Solve: \(4^{x-2} = 64 \).

In order to solve this, we must make both the bases the same. Since there is a 4 on the left hand side, I want to write 64 as 4 raised to some power. It is known that \(4^3 = 64 \) so we can now rewrite our equation:

\[4^{x-2} = 4^3. \]

The property above states that if the bases are the same then we can set the exponents equal to each other. If we do this we will have \(x - 2 = 3 \). Solving this we get \(x = 5 \).

EXAMPLE: Solve: \(\left(\frac{1}{2} \right)^{1-x} = 4 \).

We need to get both the bases to be the same. Both sides can be written with a base of 2. If we flip the fraction of \(\frac{1}{2} \) over we will change the sign of the exponent. We can also write 4 as \(2^2 \). Our equation is now:

\[\left(\frac{2}{1} \right)^{-(1-x)} = 2^2. \]

Now both bases are 2. We can set the exponents equal to each other. You will get \(-(1-x) = 2 \). Solving this you will get \(x = 3 \).

EXAMPLE: Solve: \(27^{x+2} = 9^{2x} \).

Again we need the same base. 27 can’t be written as 9 to a power, so we need something smaller. Each of these can be written with a base of 3:

\[\left(\frac{3^3}{} \right)^{x+2} = \left(\frac{3^2}{} \right)^{2x} \quad \text{We are raising a power to another power and when you do, multiply the exponents.} \]

\[3^{3x+6} = 3^{4x} \quad \text{Now the bases are the same so let’s set the exponents equal:} \ 3x + 6 = 4x. \] Solving for \(x \) we get \(x = 6 \).

EXAMPLE: Solve: \(3^{4y-1} = \sqrt{3} \).

We can change the right hand side to be \(3^{\frac{1}{2}} \). Then our equation becomes \(3^{4y-1} = 3^{\frac{1}{2}} \). The bases are the same, so we can set the exponents together. You will get \(4y - 1 = \frac{1}{2} \). To solve this, multiply both sides by 2 to clear the fractions. You will get \(8y - 2 = 1 \). Then solve for \(y \). The answer is \(y = \frac{3}{8} \).
EXAMPLE: Solve: \((2^x)^{x-2} = 8\).

Since we are raising a power to another power we need to multiply the exponents. I also want to change the 8 into \(2^3\) so we can have the same base on both sides. Now our equation becomes \(2^{x^2 - 2x} = 2^3\). Since the bases are the same we can now set the exponents equal to each other. The equation becomes \(x^2 - 2x = 3\). In order to solve this you must set it equal to zero and solve. We have \(x^2 - 2x - 3 = 0\). Factoring we get \((x + 1)(x - 3) = 0\) and so \(x = -1\) and \(x = 3\).

EXAMPLE: Solve: \(3^x = 7\).

For this problem, we can’t use the Equal Bases Property since no matter what I do I can’t get the same base here. In order to solve this you can take either the natural log or regular log of both sides:

\[
\begin{align*}
\ln 3^x &= \ln 7 \\
x \ln 3 &= \ln 7 \\
x &= \frac{\ln 7}{\ln 3}.
\end{align*}
\]

Note, you answer could also have been \(x = \frac{\log 7}{\log 3}\), which is the same answer.

EXAMPLE: Solve: \(e^{x+5} = 4\).

You definitely want to take the natural log of both sides so we can cancel out the e.

\[
\begin{align*}
\ln e^{x+5} &= \ln 4 \\
x + 5 &= \ln 4 \\
x &= \ln 4 - 5
\end{align*}
\]

This is the same as \(\log_e e^{x+5} = \ln 4\). We can use property #4 to simplify this:

\[
\begin{align*}
\ln e^{x+5} &= \ln 4 \\
x + 5 &= \ln 4 \\
x &= \ln 4 - 5
\end{align*}
\]

The \(\ln\) and \(e\) cancel, so now we can solve for \(x\).

If you are wondering if we can do subtract the 5 from 4 then the answer is no. These are not like terms.

EXAMPLE: Solve: \(2^{x+1} = 5^{1-2x}\).

First take the natural log of both sides and use property #5 to bring down powers.

\[
\begin{align*}
\ln 2^{x+1} &= \ln 5^{1-2x} \\
(x + 1) \ln 2 &= (1 - 2x) \ln 5 \\
x \ln 2 + \ln 2 &= \ln 5 - 2x \ln 5 \\
x \ln 2 + 2x \ln 5 &= \ln 5 - \ln 2 \\
x (\ln 2 + 2 \ln 5) &= \ln 5 - \ln 2 \\
x &= \frac{\ln 5 - \ln 2}{\ln 2 + 2 \ln 5}
\end{align*}
\]

We can leave our answer in this form. You do not need a decimal.

Are you allowed to cancel the \(\ln 2\) from top and bottom? The answer is NO. You can only do this if all the terms on the top and bottom are being multiplied. Therefore this is as far as we can go with simplifying.
EXAMPLE: Solve: $3^{2x} - 3^x - 72 = 0$.

This one will factor. In order to do this, let’s make a substitution. We will let $u = 3^x$ and $u^2 = 3^{2x}$. The always the middle term, ignoring the sign in front of it, so u is 3^x.

$$u^2 - u - 72 = 0$$
We have substituted. Now it is easier to factor.

$$(u - 9)(u + 8) = 0$$
Now put back the u, which is $u = 3^x$.

$$(3^x - 9)(3^x + 8) = 0$$
Set each one equal to zero and solve each one individually.

$$3^x - 9 = 0$$
$$3^x = 9$$
$$3^x = 3^2 \text{ so } x = 2.$$
$$3^x + 8 = 0$$
$$3^x = -8$$

The problem with this one is that -8 is not in our domain, so this is not one of our answers. The only answer is $x = 2$.

EXAMPLE: Solve: $2^{2x} - 7 \cdot 2^x + 12 = 0$.

This one will factor. In order to do this, let’s make a substitution. We will let $u = 2^x$ and $u^2 = 2^{2x}$. The always the middle term, ignoring the sign in front of it, so u is 3^x.

$$u^2 - 7u + 12 = 0$$
We have substituted. Now it is easier to factor.

$$(u - 3)(u - 4) = 0$$
Now put back the u, which is $u = 2^x$.

$$(2^x - 3)(2^x + 4) = 0$$
Set each one equal to zero and solve each one individually.

$$2^x - 3 = 0$$
$$2^x = 3$$
$$\ln 2^x = \ln 3$$
Solving we get $x = 2$.

$$2^x - 4 = 0$$
$$2^x = 4$$

So $x \ln 2 = \ln 3$, and after dividing we get $x = \frac{\ln 3}{\ln 2}$. So our two answers are $x = 2$, $x = \frac{\ln 3}{\ln 2}$.

EXAMPLE: Solve: $\log_5(4x + 5) = 2$.

To solve this one, we first want to change from logarithmic form to exponential form. You will get $5^2 = 4x + 5$. So we have $25 = 4x + 5$, in which $20 = 4x$, so $x = 5$.

EXAMPLE: Solve: $2 \cdot \log_7 x = \log_7 16$

First we want to use property #5 from the previous section to bring up the 2. You will get: $\log_7 x^2 = \log_7 16$. Now we need to get rid of the logs. We can do this be changing from the log form to exponential. It doesn’t matter which log you start with. I will change the log on the left side of the equation. Changing from log form to exponential you will get: $7^{\log_7 16} = x^2$. This simplifies to $16 = x^2$, so by solving this we get $x = 4$ and $x = -4$. What happens if we put $x = -4$ back into the original equation? That’s right, you will get an error. The answer of $x = -4$ is not in the domain, so we need to discard it. So our only answer to this one is $x = 4$.

MAKE SURE YOU ALWAYS CHECK YOUR ANSWERS TO SEE IF IT FITS THE DOMAIN!! IF NOT, YOU WILL NEED TO REJECT THIS ANSWER.
EXAMPLE: Solve: \(\log_b (x + 7) = 1 - \log_b (2 - x) \)

The strategy with these problems is to first get all the logs on one side of the equation. Next the logs will be combined into one by using the log properties. Last we will change it into exponential form. Let’s first get all the logs on one side of the equation: \(\log_b (x + 7) + \log_b (2 - x) = 1 \). Now we can use property #6 to combine these into a single log: \(\log_b (x + 7)(2 - x) = 1 \). Now we need to change this into exponential form:

\[(x + 7)(2 - x) = 8^1 \]

We need to multiply on the left side of the equation: \(-x^2 - 5x + 14 = 8\). Now set this equal to zero: \(-x^2 - 5x + 6 = 0\). Now multiply both sides by -1 to get: \(x^2 + 5x - 6 = 0\). Now factor:

\[(x + 6)(x - 1) = 0 \]

We get \(x = -6\) and \(x = 1\) as our answers. Now let’s check to make sure both of these are in our domain. Put \(-6\) into the original equation to get \(\log_b (1) + \log_b (2) = 1 - \log_b (2 - 6)\). We get:

\[\log_b (1) = 1 - \log_b (4) \]

Since both of the numbers inside the log are positive, that means it is in our domain. Now let’s try \(x = 1\): \(\log_b (1 + 7) = 1 - \log_b (2 - 1)\). You will get \(\log_b (8) = 1 - \log_b (1)\). The numbers inside the log are positive, so we know that \(x = 1\) is in our domain. Our answers are \(x = -6\) and \(x = 1\).

EXAMPLE: Solve: \(\log_2 (x + 11) + \log_2 (x + 7) = 5 \)

\[\log_2 (x + 11)(x + 7) = 5 \] First combine into one log.
\[2^5 = (x + 11)(x + 7) \] Change into exponential form
\[32 = x^2 + 18 + 77 \] Multiply and simplify
\[0 = x^2 + 18x + 45 \] Set it equal to zero
\[0 = (x + 3)(x + 15) \] Factor
\[x = -3, \ x = -15 \] These are our answers. Now we need to make sure they are in domain.

If we put \(-3\) into the original we get \(\log_2 (-3 + 11) + \log_2 (-3 + 7) = 5\) which is \(\log_2 8 + \log_2 4 = 5\). This is okay since both 8 and 4 are in the domain. If we put in \(-15\) we get \(\log_2 (-15 + 11) + \log_2 (-15 + 7) = 5\) which results in \(\log_2 (-4) + \log_2 (-8) = 5\). We can’t have negative numbers inside a log, therefore \(-15\) is not one of our answers. Our only answer for this problem is \(x = -3\).

EXAMPLE: Solve: \(\log_2 (x + 3) - \log_2 (x + 5) = 1 \)

\[\log_2 \left(\frac{x + 3}{x + 5} \right) = 1 \] First combine into one log. This time we will turn it into a fraction
\[\log_2 \left(\frac{x + 3}{x + 5} \right) = 1 \] We used property #7. Now change into exponential form.
\[\frac{x + 3}{x + 5} = 2^1 \] We can solve this by cross multiplying.
\[2(x + 5) = x + 3 \] Now solve for \(x\).
\[2x + 10 = x + 3 \]
\[x = -7 \]

If we put \(-7\) into the original we get \(\log_2 (-7 + 3) - \log_2 (-7 + 5) = 1\) which is \(\log_2 (-4) + \log_2 (-2) = 1\). We can’t have a negative inside the log, so we reject the answer \(x = -7\). Since our only answer did not work, the answer to the problem is “no solution” or undefined.
EXAMPLE: Solve: \(\log_3(x+1) = 2 + \log_3(2x-1) \)

\[
\log_3\left(\frac{x+1}{2x-1} \right) = 2
\]

Get all the logs on one side of the equation.

First combine into one log. This time we will turn it into a fraction

\[
\frac{x+1}{2x-1} = 3^2
\]

We used property #7. Now change into exponential form.

\[
\frac{x+1}{2x-1} = 9
\]

We can solve this by cross multiplying.

\[
9(2x-1) = x+1
\]

Now solve for \(x \).

\[
18x - 9 = x + 1
\]

\[
x = \frac{10}{17} \approx .59
\]

If we put this into the original problem we get \(\log_3(.59 + 1) = 2 + \log_3(2(.59) - 1) \).

There are positive number inside the logs, so \(x = 10/17 \) is our answer.

EXAMPLE: Solve: \(\log_2(x-3) + \log_2 x - \log_2(x+2) = 2 \)

\[
\log_2\left(\frac{x(x-3)}{x+2} \right) = 2
\]

Combine into one log. Positive logs on top, negative logs on bottom.

\[
\frac{x(x-3)}{x+2} = 2^2
\]

We changed from log form into exponential form.

\[
\frac{x^2 - 3x}{x+2} = 4
\]

Now cross multiply.

\[
x^2 - 3x = 4(x+2)
\]

Now solve for \(x \). Because it’s a quadratic, we need to set it equal to zero.

\[
x^2 - 3x = 4x + 8
\]

Now factor and set each factor equal to zero.

\[
x^2 - 7x - 8 = 0
\]

\[
(x+1)(x-8) = 0
\]

\[
x = -1, 8
\]

If we put these into the original problem, we find that the only answer is \(x = 8 \).