PROBLEMS AND SOLUTIONS - SOLVING LOGARITHMIC EQUATIONS
Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada
Please Send Questions and Comments to ingrid.stewart@csn.edu. Thank you!

PLEASE NOTE THAT YOU CANNOT ALWAYS USE A CALCULATOR ON THE ACCUPLACER - COLLEGE-LEVEL MATHEMATICS TEST! YOU MUST BE ABLE TO DO SOME PROBLEMS WITHOUT A CALCULATOR!

Problem 1:

Solve $\log_2(x + 3) = 2$. Only find solutions that produce REAL numbers, except 0, in the original equation when substituting for x.

Problem 2:

Solve $\log(x - 1) - \log(x + 1) = 1$. Only find solutions that produce REAL numbers, except 0, in the original equation when substituting for x.

Problem 3:

Solve $\ln x + \ln(2x - 1) = 2$. Only find solutions that produce REAL numbers, except 0, in the original equation when substituting for x! Round to 4 decimal places.

Problem 4:

Solve $\log(4x + 2x^2) = \log(3x^2)$. Only find solutions that produce REAL numbers, except 0, in the original equation when substituting for x!

This logarithmic equation contains only logarithmic expressions. Therefore, we can discard the word \log on either side, leaving us with an algebraic equation.

Problem 5:

Solve $\log(2x - 1) = \log(4x + 3) - \log x$. Only find solutions that produce REAL numbers, except 0, in the original equation when substituting for x!
Problem 6:
Solve $\log(x + 4) - \log x = \log(x + 2)$. Only find solutions that produce REAL numbers, except 0, in the original equation when substituting for x! Round to 4 decimal places.

Problem 7:
Solve for x: $2 \ln x = \ln(2 - x) + \ln(4 - x)$. Only find solutions that produce REAL numbers, except 0, in the original equation when substituting for x!

Problem 8:
Solve $\log(x - 3) = \log(-x)$. Only find solutions that produce REAL numbers, except 0, in the original equation when substituting for x!

Problem 9:
Solve $\log(3 - \frac{1}{2} x) = \log(-x)$. Only find solutions that produce REAL numbers, except 0, in the original equation when substituting for x!

Problem 10:
Solve $\log x = \log(-5x - 6)$. Only find solutions that produce REAL numbers, except 0, in the original equation when substituting for x!

Problem 11:
Solve $2 \log x = \log(-5x - 6)$. Only find solutions that produce REAL numbers, except 0, in the original equation when substituting for x!

Problem 12:
A medical technologist creates a reagent with a pH of 7.48. Find the concentration of hydrogen ions $[H^+]$ in the reagent using the formula $pH = -\log[H^+]$. Express your answer in Scientific Notation rounded to two decimal places.
You can find detailed solutions below the link for this problem set!

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>13</td>
<td>2. No solutions</td>
</tr>
<tr>
<td>4.</td>
<td>4</td>
<td>5. 3</td>
</tr>
<tr>
<td>7.</td>
<td>4/3</td>
<td>8. No solutions</td>
</tr>
<tr>
<td>10.</td>
<td>-3, -2</td>
<td>11. No solutions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12. 3.31 \times 10^{-8}</td>
</tr>
</tbody>
</table>